ИНФОРМАЦИЯ

ПОЛЕЗНАЯ ИНФОРМАЦИЯ

Сварные соединения

Влияние внутренних и внешних факторов на скорость коррозии

Нержавеющие поручни

Средства индивидуальной защиты органов зрения, головы и лица сварщика

Сварка тонколистовой стали

Меры по уменьшению пористости сварных швов

Класификация и виды коррозионных процессов

Цвета ral

Эскизы ворот и калиток

Дефекты сварки - как их предотвратить!

Электродуговая сварка

Сварка вертикальных, горизонтальных и потолочных швов

Классификация дефектов сварных швов

Строение сварного шва

Топ-10 сварочных ошибок

Сварочный стол какой он?

Сварка чугуна - Почему это так сложно?

Системы вентиляции при сварке

Изолирующие защитные маски сварщика

Электродные покрытия

П’ять еффективных совета по эксплуотации сварки

Алюминий и его сплавы

4 наиболее распространенные сварочных процессов на сегодняшний день.

Полезная информация об услуге, выноса балконов

Сварка полипропиленовых труб для дома и дачи в Киеве и Киевской области

Термитная сварка

Перила из нержавеющей стали, для Вашего дома

 

Различия между сваркой МИГ и ТИГ

 

Сварка стыковых швов

 

Конструкционные материалы на основе графита

 

Покрытия силикатными эмалями

 

Металлические покрытия и методы их нанесения

 

Лестничные ограждения

 

Что следует учитывать при покупке сварочного инструмента для малого бизнеса

 

Сварка многослойных швов

 

Что такое высоко частотная Сварка?

 

Трещины в сварных швах

 

Химико-термическая обработка стали

 

Как сварить из нержавеющей стали

 

Вентиляционные агрегаты в сварочных цехах

 

Электрическая сварочная дуга

 

Современные представления о природе образования дефектов

 

Сварка нержавеющей стали

 

Как построить деревянный забор самостоятельно

 

Электроды для дуговой сварки

 

Коррозионная стойкость цветных металлов

 

Основные сведения о сплавах

 

Металлическая наружная лестница

 

5 отличительных характеристик нержавеющей стали

 

Сварка алюминия

 

Влияние на сталь углерода, постоянных примесей и легирующих элементов

 

Термическая обработка стали

 

Атмосферная коррозия

 

Строение металлов

 

Покрытия смазками и пастами

 

Опасные и вредные производственные факторы при сварке

 

Сварка угловых швов

 

Влияние дефектов на работоспособность сварных соединений и конструкций

 

Медь и ее сплавы

 

Сварочные горелки со встроенным отсосом

 

Разрушение металла и факторы, влияющие на этот процесс

 

Пластические массы

 

Безопасность при сварке

 

Инструментальные стали

 

Гуммирование

 

Сварочные методы для изготовления

 

Чугуны

 

Химически стойкие лакокрасочные покрытия

 

Кристаллизация металлов

 

Коррозионно-стойкие сплавы на железоуглеродистой основе

 

Различные виды сварки

 

Историческое развитие сварки

 

Выбор сварочного тока при сваривании

 

Металловедение

 

Основы сварки в двух словах

 

Пути снижения вредного влияния неметаллических включений в сварных швах

 

Сварка пластика - Узнайте Советы и хитрости

 

Покрытия полимерами

 

Делая сварочные работы за рубежом - Является ли это быстрый способ разбогатеть?

 

Лакокрасочные покрытия

 

Способы нанесения покрытий на электроды

 

Титан и его сплавы

 

Основные понятия о сварке металлов

 

Сварка и изготовление

 

Термостойкие и электроизоляционные покрытия

 

Поры в сварных швах

 

Общие сведения о типовом оборудовании для ручной дуговой сварки и его обслуживание

 

Свойства металлов

 

Методы по устранению дефектов формы шва

 

История сварки и изготовления

 

Выбор cварочной маски

 

Каковы принципы для сварки чугуна?

 

Сварщики и подводная сварка

 

Сварочный процесс и образование дефектов

 

Конструкционные стали

 

Специальная одежда, обувь и другие средства защиты сварщика

 

Наплавка валика

 

Магний и его сплавы

 

История Сварка - Вниз и Грязный

 

Коррозия металлов в почве

 

Угольные и графитированные электроды

 

Сколько зарабатывают сварщики

 

Пути уменьшения вероятности образования трещин в сварных швах

 

Силикатные материалы

 

Средства индивидуальной защиты органов дыхания сварщиков

 

Полезная графическая информация, бесплатно

 

Микро Сварщик сверхточной сварки

Атмосферная коррозия

Атмосферной коррозией называют разрушение металлов и сплавов, в атмосфере и в средах влажных газов в результате электрохимических и химических процессов. Преобладающее значение при атмосферной коррозии имеют электрохимические гетерогенные процессы, которые протекают в тонких слоях влаги, сконденсировавшейся на поверхности металла.


При атмосферной коррозии гетерогенный электрохимический процесс часто сопровождается кислородной деполяризацией, но в условиях промышленной атмосферы, содержащей различные агрессивные газы, коррозионный - процесс может протекать и за счет водородной деполяризации. На скорость процесса атмосферной коррозии влияют характер атмосферы, продолжительность воздействия, состав металла и состояние его поверхности. Влажность, температура и степень загрязнения атмосферы сильно влияют на качество и состав образующихся на поверхности металла ,пленок влаги, причем в таких слоях становится возможным возникновение концентрационной поляризации.

 

Наиболее агрессивны среды, сильно загрязненные промышленными отходами — газами СОг, 502, Ы02, ЫНз, НС1, частицами солей, угольной пылью; менее активны чистые и сухие континентальные атмосферы.

 

О влиянии состава атмосферы на скорость коррозии можно судить и по следующим данным: в сельской атмосфере скорость коррозии стали составляет 100—250 г/м2-год, а в промышленной атмосфере 450—550 г/м2-год; для цинка — соответственно 7—20 и 40—80 г/м2-год.

В зависимости от влажности атмосферы различают несколько видов атмосферной коррозии: мокрую, влажную и сухую коррозию.


Мокрая атмосферная коррозия наблюдается при капельной конденсации влаги на поверхности металла при относительной влажности воздуха, равной 100%. К этому виду коррозии относят разрушения металлических конструкций под воздействием дождя, снега, тумана и др.


Влажная атмосферная коррозия возникает при влажности в атмосфере ниже 100% и сопровождается адсорбционной, капиллярной и химической конденсацией на поверхности металла. Адсорбционная конденсация — это процесс образования тончайшего слоя молекул воды, связанных с поверхностью металла адсорбционными силами. В зависимости от состояния металлической поверхности па ней при влажности немного ниже 100% может адсорбироваться слой влаги в несколько десятков молекулярных слоев. Основные этапы процесса конденсации: образование мономолекулярного адсорбционного слоя пленки из молекул воды, затем при понижении температуры происходит осаждение мельчайших капелек воды, в дальнейшем капельки водяного пара образуют сплошную пленку по всей поверхности металла. В случае шероховатой или запыленной поверхности образуется молекулярный слой воды. Химическая конденсация влаги (хемосорбцня воды) — это процесс дальнейшего развития адсорбционной конденсации. Для этого процесса характерно образование гпдроксидов. Капиллярная конденсация преимущественно проходит в зазорах, щелях и пр.


Сухая атмосферная коррозия проходит при относительной влажности ниже 60%. т. е. под действием кислорода воздуха. При этом процессе наблюдается лишь потускнение поверхности металла вследствие образования пленки из продуктов коррозии. Процесс разрушения в случае сухой атмосферной коррозии подобен химическому процессу роста оксидных пленок на поверхности металла: Пленка на металле в условиях сухой атмосферной коррозии растет очень медленно, рост ее быстро прекращается, однако сухая атмосферная коррозия при появлении на металлической поверхности тончайших пленок влаги переходит во влажную атмосферную коррозию, а при попадании брызг — в мокрую атмосферную коррозию.


На скорость атмосферной коррозии оказывают влияние свойства образующихся продуктов коррозии, в частности, их гигроскопичность. Так, гигроскопичные продукты коррозии меди и никеля в атмосфере, загрязненной сернистыми газами, способствуют интенсивному поглощению влаги поверхностью металла и дальнейшему усилено коррозии. Негигроскопичные продукты коррозии алюминия хорошо предохраняют металл от дальнейшего разрушения даже при наличии в атмосфере оксида серы (IV).


При работе аппаратуры в атмосфере следует учитывать контакт двух металлов, обладающих различными значениями электродных потенциалов. На основе исследований механизма контактной коррозии рекомендованы следующие количественные критерии контакта металлов: допустимыми контактами являются такие, при которых скорость коррозии анода составляет 0 -50 г/м2-год; относительно допустимыми — при скорости 50—150 г/м2-год; контакты не допустимы, если скорость коррозии превышает 150 г/м2-год.


Все металлы разделены на пять групп: I группа — магний; II — цинк, алюминий, кадмий; III — железо, углеродистые стали, свинец, олово; IV — никель, хром, хромистые стали, хромоникелевые стали; V — медноникелевые сплавы, медь, серебро. Допустимым считается контакт металлов, входящих в одну и ту же группу. Металлы каждой последующей группы усиливают коррозию металлов предыдущей группы. Внутри группы металлы подвергаются коррозии, находясь в контакте с металлами, расположенными в группе за ними.


Меры по защите металлов от атмосферной коррозии могут быть различными и зависят от конструктивных и эксплуатационных особенностей машин и аппаратов, но основная задача этих мер сводится к торможению анодного или катодного процесса.